Structural and electrochemical properties of a novel $\mathbf{N}, \mathbf{N}^{\prime}$-dialkylsubstituted quinone diimine

 J ürgen H einze*, ${ }^{*}$ and Petra H auser ${ }^{\text {c }}$
a 0 rganisch-C hemisches Institut der U niversität M ünster, C orrensstr. 40, D-48149 M ünster, Germany
${ }^{\text {b }}$ Institut für Organische C hemie, Technische U niversität Braunschweig, H agenring 30, D-38106 Braunschweig, Germany
${ }^{\text {c }}$ Institut für P hysikalische C hemie der U niversität F reiburg, A lbertstr. 21, D-79104 F reiburg, Germany

Abstract

trans,trans-3,3,7,7,10,10,14,14-Octamethyl-1,2,3,4,4a,7,7a,8,9,10,11,11a,14,14a-tetradecahydroquino-[2,3-b]acridine 5, formed by a Lewis acid-catalyzed biscyclization of N -arylbisimine 3 and subsequent autoxidation, represents the first stable example of the unexplored class of N, N '-dialkyl-substituted quinone diimines. The X-ray crystal structure of 5 exhibits the following features: space group $\mathrm{P} \mathbf{2}_{1} / \mathrm{c}$; a ribbon-like arrangement of two parallel strands along the b-axis. The smallest intermolecular distance between two quinoid systems is $4.846 \AA$ and therefore any close aromatic contacts in this material can be precluded. A chemically reversible single electron reduction at $E^{0}=-1.87 \mathrm{~V}$ has been observed by cyclic voltammetry.

Introduction

Interest in quinoid systems has been stimulated by the reversible redox properties ${ }^{1}$ and possible applications as organic conducting materials. ${ }^{2}$ A lthough numerous quinone diimines ${ }^{3}$ with electron-withdrawing substituents on nitrogen (e.g. $\mathrm{CN}, \mathrm{SO}_{2} \mathrm{R}$, $\left.\mathrm{CO}_{2} \mathrm{R}\right)^{4}$ are known, their aliphatic counterparts remain largely unexplored. ${ }^{5}$ Only the N, N '-dimethyl- ${ }^{6}$ and N, N '-dicyclohexylsubstituted quinone diimines ${ }^{7}$ have been described, and both seemed to be rather unstable. During our ongoing studies on formal hetero-Diels-Alder reactions of N -arylimines, we recently obtained pentacyclic N, N '-dialkyl-substituted quinone diimine 5 as an unexpected by-product together with the diamine 4 by a Lewis acid-induced biscyclization of the bisimine 3 (Scheme 1). ${ }^{8}$ In contrast to the diamine 4, whose formation can be rationalized by a stepwise mechanism via cyclization of an iminium ion followed by a subsequent Friedel-Crafts-type cyclization of the tertiary carbenium ion and tautomerization to the hexadecahydroquino[2,3-b]acridine 4, ${ }^{9}$ the mechanism of theformation of quinone diimine 5 under these conditions remained unclear. Encouraged by its remarkable stability we therefore investigated quinone diimine 5 in more detail with respect to the synthesis, structural and electrochemical properties. The results are described below.

Results and discussion

As mentioned previously, ${ }^{8}$ treatment of bisimine 3 (prepared from 3,3,7-trimethyloct-6-enal 1 and p-phenylenediamine 2) with $\mathrm{M} \mathrm{eA} \mathrm{ICI} I_{2}$ in anhydrous dichloromethane gave a (52.6:47.4) mixture of diamine 4 and quinone diimine 5 , which could be separated by preparative HPLC. Despite carrying out the cyclization under rigorously deoxygenated conditions, we suspected that quinone diimine 5 was formed via autoxidation from 4 during aqueous work-up. ${ }^{3}$ Therefore a solution of 4 in dichloromethane was stirred in an open flask. A fter one day complete conversion was observed and the quinone diimine 5 was isolated in 87% yield. Following this protocol $\mathbf{5}$ can be conveniently prepared from $\mathbf{3}$ without the tedious chromatographic separation of $\mathbf{4}$ and $\mathbf{5}$ by direct autoxidation of the

3

Scheme 1 Reagents and conditions: i, molelcular sieves $4 \AA$ (powder), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$, (99%); ii, $\mathrm{MeAlCl} \mathrm{C}_{2}$ (2.5 mol equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $25^{\circ} \mathrm{C}$, 2 days (95%); iii, $\mathrm{O}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1$ day (87%)
crude cyclization mixture. However, compound 5 might have been formed, at least partially, via a radical cation-induced mechanism, because it is known that aluminium Lewis acids like AICl_{3} in dichloromethane or chloroform can be used as oxidizing agents for π-systems ${ }^{10}$ and can induce radical cation
formation. ${ }^{11}$ In order to rule out this hypothesis, bisimine $\mathbf{3}$ was cyclized in the presence of 2.5 mol equiv. of $\mathrm{MeA} \mathrm{ICl}_{2}$ and either 0.1 mol equiv. of dibenzoyl peroxide or 0.1 mol equiv. of galvinoxyl respectively. N either the radical starter nor the inhibitor caused any change of the product ratio 4:5. This result strongly supports the mechanism of autoxidation during work-up.

Fortunately, an X-ray crystal structure of $\mathbf{5}$ could be obtained (Fig. 1). trans,trans-3,3,7,7,10,10,14,14-O ctamethyl1,2,3,4,4a,7,7a, 8,9,10,11,11a,14,14a-tetradecahydroquino-
[2,3-b]acridine 5 crystallized from hexane-ethyl acetate as yellow monoclinic needles of the space group P $21 / c^{12,13}$ Within the limits of error the molecular geometry strongly supports the proposed $D_{2 h}(2 / \mathrm{m} 2 / \mathrm{m} \mathrm{2/m})$ symmetry. The observed bond lengths of the quinoid system ($\mathrm{N} 5-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-$ N 12-C 13-C13A) are very similar to those of N, N '-dicyanosubstituted quinone diimines. ${ }^{14,15} \mathrm{O}$ nly the $\mathrm{C}=\mathrm{N}$ bond $[1.290$ (2) \AA] of 5 is slightly shortened by $0.03 \AA$ as compared to $1.320(5)$ \AA in N,N '-dicyano-2,5-dimethylquinone diimine. ${ }^{14}$ This difference is probably caused by the decreased bond order in the dicyanoquinone diimines due to the conjugation of the $\mathrm{C}=\mathrm{N}$ bond with the -M -substituted imine moiety. A view of the packing diagram along the c -axis shows a ribbon-like, twisted orientation of quinone diimine 5 along the b-axis (F ig. 2). H owever, a different perspective shows, that the ribbon actually consists

Fig. $1 \quad X$-Ray crystal structure of quinone diimine 5. Selected bond lengths/Â: N 5-C5a, 1.290(2); C5a-C6, 1.464(2); C6a-C6, 1.335(2); C6a-C12a, 1.474(2); C12a-N 12, 1.290(2); C12a-C13, 1.465(2); C13-C13a, 1.340(2); C5a-C13a, 1.473(2). Selected angles $/{ }^{\circ}$: C5a-C6-C6a, 123.77(14); C6-C6a-C 12a, 118.34(14); C6a-C12a-C13, 117.54(14); C12a-C 13-C13a, 124.28(14); C13-C13a-C 5a, 117.73(14); C13a-C5a-C6, 118.08(13).
of two different strands of quinoid systems 5 (Fig. 3). Two quinone diimines 5 within one strand are related by a crystallographic translation along the b-axis. Within different strands two molecules of 5 are related by a crystallographic C_{2}-axis. The closest contact between the centres of two quinoid systems is $7.618 \AA$. A s can be seen from Fig. 4, the shortest possible π - π-distance is $4.848 \AA$, which is the distance between the $\mathrm{C}=\mathrm{N}$ groups of two neighbouring quinone diimines 5 . That means stabilizing effects caused by π - π-stacking are certainly not operative in this system.
Cyclic voltammetric measurements of compound $\mathbf{5}$ showed a chemical reversible single-electron reduction at $\mathrm{E}^{0}=-1.87 \mathrm{~V}$ in THF (Fig. 5). ${ }^{16}$ The reduction peak was observed at -1.93 V and the corresponding oxidation peak at $-1.81 \mathrm{~V} .{ }^{17}$ The negative redox potential illustrates the weak oxidizing properties of compound 5 in comparison with -M -substituted quinone diimines, whose E^{0} values are typically in the range between +0.8 V and $-0.5 \mathrm{~V}^{18}$ The E^{0} value of 5 is even below those found for quinones (between +0.2 V and -1.5 V). H owever, with respect to potential applications in molecular electronics and the design of new charge transfer complexes, it might be desirable to have a system with reversible redox behavior in a low potential range that is otherwise not accessible.

Experimental

G eneral ex perimental conditions

These are reported elsewhere. ${ }^{8}$ Syntheses and spectroscopic data for bisimine 3, diamine 4 and quinone diimine 5 were described previously. ${ }^{8}$

trans,trans-3,3,7,7,10,10,14,14-0 ctamethyl-1,2,3,4,4a,7,7a,8,9, 10,11,11a,14,14a-tetradecahydroquino[2,3-b]acridine 5 via biscyclization-autoxidation

To a cooled solution of bisimine 3 ($816 \mathrm{mg}, 2.00 \mathrm{mmol}$) in anhydrous dichloromethane ($25 \mathrm{~cm}^{3}$) was added dropweise $\mathrm{M} \mathrm{eA} \mathrm{ICl}{ }_{2}\left(5.0 \mathrm{~cm}^{3}, 5.00 \mathrm{mmol} ; 1.0 \mathrm{~mol} \mathrm{dm}^{-1}\right.$ solution in hexane) at $-78{ }^{\circ} \mathrm{C}$ under argon over a period of 1 h . The cooling was removed and the mixture was stirred for 2 days at room temperature. Then the mixture was poured into ice-cold $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{NaOH}\left(50 \mathrm{~cm}^{3}\right)$ and the layers were separated. The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$) and the combined organic layers were dried over sodium sulfate

Fig. 2 Section of the X-ray crystal structure of $\mathbf{5}$ viewed along the c-axis

Fig. 3 Section of the X-ray crystal structure of $\mathbf{5}$ viewed along the a-axis

Fig. 4 Shortest π - π-distances (\AA) within the X-ray crystal structure of 5. The corresponding symmetry codes are also shown.

Fig. 5 Cyclic voltammogram of 5 in THF at 243 K (scan rate 100 mV s^{-1})
and filtered. The filtrate, which contained a mixture of $\mathbf{4}$ and $\mathbf{5}$ (52.6:47.4, determined by analytical HPLC) was vigorously stirred in an open-flask for 1 day. The solvent was evaporated and the residue was recrystallized from hexane-ethyl acetate ($90: 10$) to give yellow crystals ($674 \mathrm{mg}, 83 \%$); $\mathrm{mp} 304^{\circ} \mathrm{C}$. Spectroscopic data were in accord with ref. 8 (Found: C, 82.67; $\mathrm{H}, 10.42 ; \mathrm{N}, 6.91 . \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2}$ requires C, 82.70; H, 10.41; N, 6.89\%).

Acknowledgements

F inancial support from the D eutsche Forschungsgemeinschaft (G erhard-H ess-Preis for S. L.), the A lfried K rupp von Bohlen und H albach-Stiftung and the Fonds der Chemischen Industrie is gratefully acknowledged. S. L. thanks the Wissenschaftsministerium des L andes N ordrhein-Westfalen for a Lise M eitner fellowship. We thank Professor H. J. Schäfer, U niversität M ünster and Professor S. H ünig, U niversität Würzburg for their helpful discussions.

3 P. Grünanger, in H ouben-W eyl M ethoden der O rganischen C hemie, Thieme Verlag, Stuttgart, 4th edn., 1979, vol. VII/3b, p. 233.
4 P. Erk, S. Hünig, G. K lebe, M. K rebs and J. U. von Schütz, Chem. Ber., 1991, 124, 2005; S. H ünig, P. Erk, H. M eixner, T. M etzenthin, U. L angohr, J. U. von Schütz, H. P. Werner, H. C. Wolf, R . Burkert, H. W. Helber and G. Schaumburg, A dvan. M ater., 1991, 3, 311; R. K ato, H. K obayashi and A. K obayashi, J. A m. Chem. Soc., 1989, 111, 5224; S. H ünig and P. Erk, A dvan. M ater., 1991, 3, 225.
5 For N, N '-diphenyl-substituted quinone diimines see: H. W. Boone, M . A . Bruck, R . B. Bates, A . B. Padias and H. K . H all, J r., J. Org. Chem., 1995, 60, 5279.
6 R. Willstätter and A. Pfannenstiel, C hem. Ber., 1905, 38, 2244.
7 J. F. Carson, J. A m. Chem. Soc., 1953, 53, 4300.
8 O. Temme and S. L aschat, J. C hem. Soc., Perkin Trans. 1, 1995, 125.
9 For mechanistic investigations of this cyclization see: F. Linkert, S. L aschat, S. K otila and T. Fox, Tetrahedron, 1996, 52, 955.

10 J. L. Courtneidge and A. G. D avies, J. Chem. Soc., Chem. Commun., 1984, 136.
11 H. Wang, L. D. K ispert and H. Sang, J. Org. C hem., 1988, 53, 5967.
12 D etails of the X -ray crystal structure determination of 5 : formula $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2}, \mathrm{M} 406.64$, crystal size $0.40 \times 0.35 \times 0.10 \mathrm{~mm}, a=$ $11.728(2), \quad b=14.466(2), \quad \mathrm{c}=14.411(2) \quad \AA, \quad \beta=93.14(1)^{\circ}, \quad \mathrm{V}=$ 2441.3(6) $\AA^{3}, D=1.106 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~m}=4.7 \mathrm{~cm}^{-1}, \mathrm{Z}=4$, monoclinic, space group P21/C (No. 14), Enraf-N onius-CAD 4 diffractometer, $\mathrm{T}=-50^{\circ} \mathrm{C}, \mathrm{I}=1.54178 \AA, \omega-2 \theta$-scan, 5178 reflections collected, $(\pm h,-\mathrm{k},+\mathrm{l}),[\sin \theta / \lambda]_{\text {max. }} 0.62 \AA^{-1}, 4972$ independent and 3946 observed reflections [F $4 \sigma(\mathrm{~F})$], 280 refined parameters $\mathrm{R}=0.053$, $\omega R^{2}=0.159$, largest difference peak and hole 0.37 and -0.25 e \AA^{-3}, H atoms calculated; structure solved by direct methods (SHELXS86); ${ }^{13}$ refinement (SHELXL-93). A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 2, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 188/94
13 G. M. Sheldrick, in C rystallographic C omputing 3, eds. G. Sheldrick, C. K rüger and R. Goddard, Clarendon, Oxford, 1985, p. 175.

14 A. Aumüller, P. Erk, S. Hünig, E. Hädicke, K. Peters and H. G. von Schnering, C hem. Ber., 1991, 124, 2001.
15 E . Tillmanns, F. Schwabenländer, S. G üssregen, S. Hünig and T. M etzenthin, A cta C rystallogr., Sect. C, 1994, 50, 715.

16 Details of the cyclic voltammetric experiment: the experimental set-up for the electrochemical investigations consisted of a typical three-electrode configuration. The working electrode was a Pt-disk (diam. 1 mm) sealed in soft glass, the counter electrode was a Pt-wire and the reference electrode an Ag -wire coated with AgCl . The voltammetric measurements were carried out with an AMEL 533 potentiostat and an EG\&G/PAR scan generator M odel 175. All experiments were performed under superdry conditions in an argon atmosphere. Tetrahydrofuran and tetrabutylammonium hexafluorophosphate were used as solvent/supporting electrolyte.
17 The purity of the quinone diimine 5 could be easily checked by CV. As soon as 5 contains traces of the corresponding hexadeca-hydroquino[2,3-b]acridine 4, an additional smaller redox wave was observed at -0.14 V . The CV curve, which is shown in Fig. 5, contains no further signals beyond -0.8 V .
18 See for example: P. de la Cruz, N. M artin, F. M iguel, C. Seoane, A. Albert, F. H. Cano, A. G onzalez and J. M. Pingarron, J. Org. Chem., 1992, 57, 6192; N. M artin, J. A. N avarro, C. Seoane, A. Albert, F. H. Cano, J. Y. Becker, V. K hodorkovsky, E. H arlev and M. H anack, J. Org. Chem., 1992, 57, 5726; A. Aumüller and S. H ünig, L iebigs A nn. Chem., 1986, 165.

R eferences

1 M . R . Bryce, Chem. Soc. Rev., 1991, 20, 355.
2 M. C. G rossel and S. C. Weston, C ontemp. Org. Synth., 1994, 1, 367; S. Hünig, P ure A ppl. C hem., 1990, 62, 395.

Paper 7/00691H
R eceived 30th J anuary 1997
A ccepted 19th J une 1997

